Numerical analysis of an optical nanoscale particles trapping device based on a slotted nanobeam cavity
نویسندگان
چکیده
A slotted nanobeam cavity (SNC) is utilized to trap a polystyrene (PS) particle with a radius of only 2 nm. The carefully designed SNC shows an ultrahigh Q factor of 4.5 × 107 while maintaining a small mode volume of 0.067(λ/nwater)3. Strongly enhanced optical trapping force is numerically demonstrated when the 2 nm PS particle is introduced into the central, slotted part of the SNC. In the vertical direction, the numerical calculation results show that a trapping stiffness of 0.4 pN/(nm · mW) around the equilibrium position and a trapping potential barrier of ~2000 kBT/mW can be reached. To our best knowledge, the trapping capability (trapping stiffness and trapping potential barrier) of the proposed structure significantly outperforms the theoretical results of those in previously reported work. In addition, the SNC system does not suffer from the metal induced heat issue that restricts the performance of state-of-the-art optical trapping systems involving plasmonic enhancement. Based on the proposed cavity, applications such as lab-on-a-chip platforms for nanoscale particle trapping and analysis can be expected in future.
منابع مشابه
Photonic crystal horizontally slotted nanobeam cavity for silicon-based nanolasers.
We theoretically propose and investigate a TM-polarized one-dimensional photonic crystal nanocavity with a horizontal SiO2 slot on a suspended silicon nanobeam via the three-dimensional finite-element method. The ultrahigh quality factor and ultrasmall effective mode volume of 1.5×10(7) and 0.176 half-wavelength cubic of the horizontally SiO2-slotted nanocavity show strong possibilities for rea...
متن کاملUltrasensitive Silicon Photonic-crystal Nanobeam Electro-optical Modulator (preprint)
Design and simulation results are presented for an ultralow switching energy, resonator based silicon-on-insulator (SOI) electro-optical modulator. The nanowire waveguide and resonator are seamlessly integrated via a high-transmission tapered 1D photonic crystal cavity waveguide structure. A lateral p-n junction of modulation length ~λ is used to alter the index of refraction through fast carri...
متن کاملEnhanced interaction strength for a square plasmon resonator embedded in a photonic crystal nanobeam cavity
The deployment of nanocavities may efficiently enhance the light-matter interaction for photonic components on chip. Three nanoscale cavity designs are investigated, including the one-dimensional (1-D) photonic crystal (PhC) nanobeam cavity, inline waveguide-integrated plasmon cavity, and square plasmon resonator embedded in the 1-D PhC nanobeam cavity (i.e., Combo cavity). The cavity performan...
متن کاملOn chip shapeable optical tweezers
Particles manipulation with optical forces is known as optical tweezing. While tweezing in free space with laser beams was established in the 1980s, integrating the optical tweezers on a chip is a challenging task. Recent experiments with plasmonic nanoantennas, microring resonators, and photonic crystal nanocavities have demonstrated optical trapping. However, the optical field of a tweezer ma...
متن کاملOptimized optomechanical crystal cavity with acoustic radiation shield
We present the design of an optomechanical crystal nanobeam cavity that combines finite-element simulation with numerical optimization, and considers the optomechanical coupling arising from both moving dielectric boundaries and the photo-elastic effect. Applying this methodology results in a nanobeam with an experimentally realized intrinsic optical Q-factor of 1.2× 10, a mechanical frequency ...
متن کامل